Class-Level Bayes Nets for Relational Data

نویسندگان

  • Oliver Schulte
  • Hassan Khosravi
  • Flavia Moser
  • Martin Ester
چکیده

Many databases store data in relational format, with different types of entities and information about links between the entities. The field of statistical-relational learning has developed a number of new statistical models for such data. Most of these models aim to support instance-level predictions about the attributes or links of specific entities. In this paper we focus on learning class-level dependencies, which model the database statistics over attributes of links and linked objects. Class-level statistical relationships are of interest in themselves, and they support applications like policy making, strategic planning, and query optimization. While a class-level model does not support instance-level predictions, learning and inference are simpler at the class-level. We describe efficient and scalable algorithms for structure learning and parameter estimation in class-level Bayes nets that directly leverage the efficiency of single-table non-relational Bayes net learners. An evaluation of our methods on three data sets shows that our algorithms are computationally feasible for realistic table sizes, and that the learned structures represented the statistical information in the databases well. After learning has compiled the database statistics into a Join Bayes net, querying these statistics via the net is faster than directly with SQL queries, and does not depend on the size of the database.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Join Bayes Nets: A new type of Bayes net for relational data

Many databases store data in relational format, with different types of entities and information about links between the entities. The field of statistical-relational learning has developed a number of new statistical models for such data. Instead of introducing a new model class, we propose using a standard model class—Bayes nets—in a new way: Join Bayes nets contain nodes that correspond to t...

متن کامل

Join Bayes Nets: A New Type of Bayes net for Relational Data

Many real-world data are maintained in relational format, with different tables storing information about entities and their links or relationships. The structure (schema) of the database is essentially that of a logical language, with variables ranging over individual entities and predicates for relationships and attributes. Our work combines the graphical structure of Bayes nets with the logi...

متن کامل

Learning Class-Level Bayes Nets for Relational Data

Many databases store data in relational format, with different types of entities and information about links between the entities. The field of statistical-relational learning (SRL) has developed a number of new statistical models for such data. In this paper we focus on learning class-level or first-order dependencies, which model the general database statistics over attributes of linked objec...

متن کامل

Bayes Nets for combining logical and probabilistic structure

We outline a new approach to using Bayes nets for a probabilistic extension of a logical structure or schema. Many real-world data are maintained in relational format, with different tables storing information about entities and their links or relationships. The structure (schema) of the database is essentially that of a logical language, with variables ranging over individual entities and pred...

متن کامل

Modelling Relational Statistics With Bayes Nets (Poster Presentation SRL Workshop)

Class-level dependencies model general relational statistics over attributes of linked objects and links. Class-level relationships are important in themselves, and they support applications like policy making, strategic planning, and query optimization. An example of a class-level query is “what is the percentage of friendship pairs where both friends are women?”. To represent class-level stat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009